
ETSI has recently released ETSI GR SAI 005, a report which summarizes and analyses existing and potential mitigation against threats for AI-based systems. Setting a baseline for a common understanding of relevant AI cyber security threats and mitigations will be key for widespread deployment and acceptance of AI systems and applications. This report sheds light on the available methods for securing AI-based systems by mitigating known or potential security threats identified in the recent ENISA threat landscape publication and ETSI GR SAI 004 Problem Statement Report. It also addresses security capabilities, challenges, and limitations when adopting mitigation for AI-based systems in certain potential use cases.
Artificial intelligence has been driven by the rapid progress of deep learning and its wide applications, such as image classification, object detection, speech recognition and language translation. Therefore, ETSI GR SAI 005 focuses on deep learning and explores the existing mitigating countermeasure attacks.
ETSI GR SAI 005 describes the workflow of machine learning models where the model life cycle includes both development and deployment stages. Based on this workflow, the report summarizes existing and potential mitigation approaches against training attacks (i.e. mitigations to protect the machine learning model from poisoning and backdoor attacks) and against inference attacks, including those from evasion, model stealing, and data extraction. Mitigation approaches are firstly summarized as model enhancement and model-agnostic, and then grouped by their rationales.
Due to the rapid evolvement of attack technology for AI-based systems, existing mitigations can become less effective over time, although their approaches and their rationales remain in place. In addition, most of the approaches presented stem from an academic context and make certain assumptions, which need to be considered when these approaches are applied in practice. ETSI GR SAI 005 intends to serve as a securing AI technical reference for the planning, design, development, deployment, operation, and maintenance of AI-based systems. In future, more research work needs to be done in the area of automatic verification and validation, explainability and transparency, and novel security techniques to counter emerging AI threats.
Download the report CLICKING ON THIS LINK.
Fachartikel

Wenn Angreifer selbst zum Ziel werden: Wie Forscher eine Infostealer-Infrastruktur kompromittierten

Mehr Gesetze, mehr Druck: Was bei NIS2, CRA, DORA & Co. am Ende zählt

WinDbg-UI blockiert beim Kopieren: Ursachenforschung führt zu Zwischenablage-Deadlock in virtuellen Umgebungen

RISE with SAP: Wie Sicherheitsmaßnahmen den Return on Investment sichern

Jailbreaking: Die unterschätzte Sicherheitslücke moderner KI-Systeme
Studien

Deutsche Unicorn-Gründer bevorzugen zunehmend den Standort Deutschland

IT-Modernisierung entscheidet über KI-Erfolg und Cybersicherheit

Neue ISACA-Studie: Datenschutzbudgets werden trotz steigender Risiken voraussichtlich schrumpfen

Cybersecurity-Jahresrückblick: Wie KI-Agenten und OAuth-Lücken die Bedrohungslandschaft 2025 veränderten
![Featured image for “Phishing-Studie deckt auf: [EXTERN]-Markierung schützt Klinikpersonal kaum”](https://www.all-about-security.de/wp-content/uploads/2025/12/phishing-4.jpg)
Phishing-Studie deckt auf: [EXTERN]-Markierung schützt Klinikpersonal kaum
Whitepaper

ETSI veröffentlicht weltweit führenden Standard für die Sicherung von KI

Allianz Risk Barometer 2026: Cyberrisiken führen das Ranking an, KI rückt auf Platz zwei vor

Cybersecurity-Jahresrückblick: Wie KI-Agenten und OAuth-Lücken die Bedrohungslandschaft 2025 veränderten

NIS2-Richtlinie im Gesundheitswesen: Praxisleitfaden für die Geschäftsführung

Datenschutzkonformer KI-Einsatz in Bundesbehörden: Neue Handreichung gibt Orientierung
Hamsterrad-Rebell

Cyberversicherung ohne Datenbasis? Warum CIOs und CISOs jetzt auf quantifizierbare Risikomodelle setzen müssen

Identity Security Posture Management (ISPM): Rettung oder Hype?

Platform Security: Warum ERP-Systeme besondere Sicherheitsmaßnahmen erfordern

Daten in eigener Hand: Europas Souveränität im Fokus






